Binary Trees

The linear access time of lists makes them prohibitive for large input sets.

- Tree structures:
 - Efficient access and update to large collections of data
 - Running time of many operations is $O(\log n)$ (or based on $\log n$)
 - Some types of trees can guarantee $O(\log n)$ in worst case
 - Binary trees are widely used, relatively easy to implement

- Uses for Trees
 - Arithmetic expression evaluation
 - Storing/searching data
 - Sorting, priority queues
 - Coding, Compression
 - File systems (general trees)

- Reading: all of Ch. 5

Definitions

The definition of a binary tree is recursive:

- A **binary tree** is a collection of nodes.
 - The collection can be empty
 - Otherwise, a binary tree consists of
 - A distinguished node, r, called the **root**
 - Two binary trees, called the left and right **subtrees**, which may be empty or not

- Binary tree characteristics
 - The root of each subtree is a **child** of r
 - r is the **parent** of each subtree root.
 - Example using recursive definition:

![Binary Tree Diagram]

CSC 375-Turner, Page 2
Definitions (cont.)

- Binary tree characteristics
 - **Path** from node n_1 to n_k: a sequence of nodes such that n_i is the parent of n_{i+1} for $1 \leq i < k$
 - **Length** of a path: the number of edges on the path ($k - 1$ using prior definition)
 - **Parent** of a node: immediate predecessor along the path from the root to that node
 - **Child** of a node: any immediate successor along the path from the root *through* that node
 - If there is a path from n_1 to n_2 then n_1 is an **ancestor** of n_2 and n_2 is a **descendant** of n_1
 - **Siblings**: nodes with the same parent
Binary Tree Depth

- Average depth
 - Normal binary trees: $O(\sqrt{n})$
 - Binary search trees: $O(\log n)$
- Worst-case binary tree is $O(n)$:

Full Binary Trees

- **Full binary tree**: each node is either a leaf or an internal node with exactly two nonempty children
- Example:

CSC 375-Turner, Page 5

CSC 375-Turner, Page 6
Full Binary Trees

- **Full Binary Tree Theorem:** The number of leaves in a non-empty full binary tree is one more than the number of internal nodes.
 - Proof (by Mathematical Induction):
 - Base: a tree with one node has one leaf and no internal nodes.
 - Induction Hypothesis: Assume any FBT containing \(n - 1 \) internal nodes has \(n \) leaves.
 - Induction Step: Select an internal node whose children are both leaves and remove them...

- **Corollary to FBT Theorem:** The number of empty subtrees in a non-empty binary tree is one more than the number of nodes in the tree.
 - Proof: in an arbitrary tree, replace every empty subtree with a leaf node...

Complete Binary Trees

- **Complete binary tree:**
 - If the height of the tree is \(d \), then all leaves except possibly level \(d \) are completely full.
 - The bottom level fills from left to right (all nodes are to the left)
Binary Tree Node ADT

- Abstract Base Class Node:

  ```cpp
  template <class Elem>
  class BinNode {
    public:
      virtual Elem & val() = 0;
      virtual void setVal (const Elem &) = 0;
      virtual BinNode* left() const = 0;
      virtual BinNode* left (BinNode*) = 0;
      virtual BinNode* right() const = 0;
      virtual BinNode* right (BinNode*) = 0;
      virtual bool isLeaf() = 0;
  };
  ```

Binary Tree Traversals

A traversal is the act of visiting each node in the tree in some systematic fashion.

- A traversal that lists every node exactly once is called an **enumeration**
- Each visit involves some sort of work
- Traversals are usually defined recursively
- Three types:
 - Inorder: visit left subtree, then parent, then right subtree
 - Preorder: visit parent, then both subtrees
 - Postorder: visit both subtrees, then parent
- Example:

  ```cpp
  template <class Elem>
  void preorder(BinNode<Elem>* subroot) {
    if (subroot != NULL) {
      visit(subroot);
      preorder(subroot -> left());
      preorder(subroot -> right());
    }
  }
  ```
Binary Tree Node Implementations

- Pointer-based nodes are most common
- How can we differentiate leaf and internal nodes? (And, should we?)
 - C++ Union construct
 - Use base class/subclass implementation
 - Don't
- Example: A simple node implementation (this one does not differentiate)

```cpp
template <class Elem>
class BinaryNode {
  public:
    Elem element;
    BinaryNode *left;
    BinaryNode *right;
};
```

Union Implementation

- Primary problem is space inefficiency:

```cpp
enum Nodetype {leaf, internal};
class VarBinNode {
  public:
    Nodetype mytype;
    union {
      struct {
        VarBinNode *left;
        VarBinNode *right;
        operator opx;
      } int1;
      Operand var;          // leaf node
    }
};
```
Expression Trees

- Nodes:
 - Leaves are operands
 - Internal nodes are operators
- Expression tree for \((a + b * c) + ((d * e + f) * g)\)

![Expression Tree Diagram]

Constructing an Expression Tree

- Convert postfix expression to a tree
- Uses a stack to store the postfix expression
 - **Pseudocode algorithm:**
    ```
    while (not end of postfix-expression) {
        read next symbol
        if symbol is an operand {
            create a one-node tree using operand
            push that tree onto the stack
        }
        else { // symbol is operator
            pop tree T1 from the stack
            pop tree T2 from the stack
            Form a new tree whose root is the operator
            T1 is right child
            T2 is left child
            push new tree onto stack
    }
    ```

CSC 375-Turner, Page 13

CSC 375-Turner, Page 14
Using Inheritance (1)

- Create an abstract base class to differentiate
- Base class and Leaf node:

```cpp
class VarBinNode {
    public:
        virtual bool isLeaf() = 0;
};

class LeafNode : public VarBinNode {
    private:
        Operand Var;
    public:
        LeafNode(const Operand & val) {
            var = val;
        }
        bool isLeaf() { return true; }
        Operand value() { return var; }
};
```

Using Inheritance (2)

- Internal Node:

```cpp
class IntNode : public VarBinNode {
    private:
        VarBinNode *left;
        VarBinNode *right;
        Operator opx;
    public:
        IntNode(const Operator & op,
                VarBinNode *l, VarBinNode *r) {
            opx = op;
            left = l;
            right = r;
        }
        bool isLeaf() { return false; }
        VarBinNode *leftChild() { return left; }
        VarBinNode *rightChild() { return right; }
        Operator value() { return opx; }
};
```
Using Inheritance (3)

- Composite implementation

- Base class and Leaf node:

  ```
  class VarBinNode {
    public:
      virtual bool isLeaf() = 0;
      virtual void trav() = 0;
  };

  class LeafNode : public VarBinNode {
    private:
      Operand Var;
    public:
      LeafNode(const Operand & val) {
        var = val;
      }
      bool isLeaf() { return true; }
      Operand value() { return var; }
      void trav() {
        cout << "Leaf: " << value() << endl;
      }
  };
  ```

Using Inheritance (4)

- Composite Implementation

- Internal Node:

  ```
  class IntNode : public VarBinNode {
    private:
      VarBinNode *left;
      VarBinNode *right;
      Operator opx;
    public:
      IntNode(const Operator & op,
             VarBinNode *l, VarBinNode *r) {
        opx = op;
        left = l;
        right = r;
      }
      bool isLeaf() { return false; }
      VarBinNode *leftChild() { return left; }
      VarBinNode *rightChild() { return right; }
      Operator value() { return opx; }
      void trav() {
        cout << "Internal: " << value() << endl;
        if (left() != NULL) left() -> trav();
        if (right() != NULL) right() -> trav();
      }

      void traverse(VarBinNode *root) {
        if (root != NULL) root -> trav();
      }
  };
  ```
Space Overhead

- FBT Theorem:
 - (Roughly) half the pointers are NULL
 - If leaves store only data, then overhead depends whether the tree is full
 - Example: all nodes are the same, with two pointers to children
 - Overhead fraction: \(o_f = o/t \)
 - Total space: \(t = n(2p + d) \)
 - Overhead: \(o = 2pn \)
 - If \(p = d \), then \(o_f = 2p/(2p + d) = 2/3 \)
 - Eliminate pointers from leaf nodes:
 - Overhead
 \[o = \frac{n}{2}(2p) \]
 - Total space
 \[t = \frac{n}{2}(2p) + dn \]
 - Overhead fraction
 \[o_f = \frac{n/2(2p)}{n/2(2p) + dn} = \frac{p}{p + d} \]
 - This is 1/2 if \(p = d \)

Array Implementation

- Binary trees may be implemented with arrays
- Structure works best for complete binary trees

CSC 375-Turner, Page 19

![Binary Tree Implementation](image_url)

- Good example of logical vs. physical implementation
 - Complete binary tree is very limited
 - Space efficiency can be achieved

CSC 375-Turner, Page 20
Array Implementation (cont.)

- Functions that may be necessary:
 - Parent(r) =
 - Leftchild(r) =
 - Rightchild(r) =
 - Leftsibling(r) =
 - Rightsibling(r) =

Binary Search Trees

BST property: all elements stored in the left subtree of a node whose value is K have values less than k. All elements stored in the right subtree of a node whose value is k have values $\geq k$.

- The BST property allows elements to be ordered in a consistent manner

- Examples:
 - Insert 37, 24, 42, 7, 2, 40, 42, 32, 120
 - Insert 120, 42, 42, 7, 2, 32, 37, 24, 40
BST Node Class

- Code example uses friends and templates

```cpp
template <class Comparable>
class BinarySearchTree;

template <class Comparable>
class BinaryNode
{
    Comparable element;
    BinaryNode *left;
    BinaryNode *right;

    BinaryNode(const Comparable &theElement, 
                BinaryNode *lt, BinaryNode *rt)
        : element(theElement), left(lt), right(rt) {} 
friend class BinarySearchTree<Comparable>;
};
```

- Note: "Comparable" is used as a reminder

- No substantive difference from your basic binary node

- (See web site for book examples)

BST Operations

- Retrieving information:
 - find: return a pointer to that node
 - Options for failure of find:
 - throw an exception
 - return boolean as a reference or otherwise
 - return a special value
 - findMin: find the smallest element in a given (sub)tree
 - findMax: find the largest element in a given (sub)tree

- Operations that modify the tree
 - insert: insert according to BST property
 - remove: remove an element
 - removeMin: remove the smallest element (may be used by remove)
 - removeAny: remove the smallest element (used by Shaffer's dictionary ADT)

- See web site for Book's code examples
BST Insert and Remove

- Insert is relatively easy: preserve BST property
- Remove is the most difficult operation
- Three cases:
 - Remove a leaf
 - Remove a node that has one child
 - Remove a node that has two children
 - General strategy: replace node with smallest value of right subtree
- Examples:

Cost of BST Operations

- Find:

- Insert:

- Remove
Heaps

- Sometimes, FIFO is not the best policy:
 - More important jobs may need to be processed first
 - Very long jobs may need to be processed last
- Examples:
 - Print jobs
 - Multiuser OS process scheduling

- A priority queue can be used to satisfy this kind of environment.
 - A priority queue allows jobs to be ordered according to priority
 - Often, it supports only a small number of public operations:
 - insert: insert an element into the queue
 - removeMin removes the minimum value
 - Alternative: removeMax removes the maximum value

Heap Concept

A heap is a complete binary tree having the heap property

- Heap property:
 - In a min-heap, the value at a node is less than (or equal to) values at child nodes.
 - In a max-heap, the value at a node is greater than (or equal to) values at child nodes.

- Values in a heap are partially ordered
 - There is a relationship between the node and its children
 - There is no defined relationship between siblings (may be > or ≥ or < or ≤ in either direction)

- Heap representations are complete binary trees that (normally) use array-based implementations
Heap Operations

- Public operations that may be implemented:
 - insert: insert an element
 - removeMax or removeMin: remove the "first" element
 - remove: remove a specific element
 - isEmpty
 - isFull
 - findMax or findMin: find the "first" element
 - buildHeap: "heapify" the contents (may be a private operation)
 - leftchild, rightchild, parent, isLeaf: standard binary tree operations

Heap ADT

- Max heap that uses the binary tree array representation

```cpp
template <Class Elem, class Comp>
class maxheap {
  private:
    Elem* heap; // Pointer to heap array
    int size;  // Max heap size
    int n;     // Current no. elements stored
    void siftdown(int); // Put an element in its place

  public:
    maxheap(Elem*, int, int);
    int heapsize() const;
    bool isLeaf(int pos) const;
    int leftchild(int) const;
    int rightchild(int) const;
    int parent(int) const;
    void insert(const Elem&);
    bool removeMax(Elem&);
    bool remove(int, Elem&);
    void buildheap();
};
```
Building a Heap

What is the most efficient way to build a max heap?

- Example: exchange (4-2), (4-1), (2-1), (5-2), (5-4), (6-3), (6-5), (7-5), (7-6)

```
     1
    /|
   2 3
  /  \
4  5  6  7
```

- Example: exchange (5-2), (7-3), (7-1), (6-1)

```
     1
    /|
   2 3
  /  \
4  5  6  7
```

- It is undesirable to build a heap as you would a BST

How to Build a Max Heap

The process works in a fashion similar to an inductive proof.

- Given that H_1 and H_2 are already (max) heaps and R is element at root:

```
    R
   /|
  H_1 H_2
```

- Two possibilities exist:
 - $R \geq$ its two children: construction is complete
 - $R <$ one or both children: push R to its proper level as follows:
 - Exchange R with the greater-valued child
 - As long as R is out of place, descend through the tree with it until it reaches its proper place

CSC 375-Turner, Page 31
Siftdown

- Siftdown accomplishes the “descend” process:

  ```
  void maxheap::siftdown(int pos) {
    while (!isLeaf(pos)) {
      int newpos = leftchild(pos);
      int rc = rightchild(pos);
      if ((rc < n) && (heap[newpos] < heap[rc]))
        newpos = rc;
      if (heap[pos] < heap[newpos]) {
        swap(Heap, pos, newpos);
        pos = newpos;
      }
    }
  }
  ```

- (See web site for templated version)

- Example(s):

Efficient Heap Build

For fast heap construction:

- Fill the array in input order

- Call buildheap procedure:
 - Works from high end of the array to low end
 - Calls siftdown for each item
 - Does not need to call siftdown for any leaf node.

- Example:
 - input file contains 42, 21, 33, 9, 12, 6, 7, 18, 72
Cost for Buildheap

- Given an unordered array, heap construction is very efficient:
 \[\sum_{i=1}^{\log n} (i - 1)n/2^i \approx n \]

- Idea:
 - Count the distance each element must go to reach final level
 - Only count downward moves
 - Once a node is processed, all nodes below it must be correct
 - Given a heap of height \(d \), up to half the nodes are at depth \(d \)...

Applications

- Selection Problem
- Event Simulation; ex: operation of a bank
 - Events:
 - customer arrival
 - customer departure
 - Simulation proceeds in “stages” based on events
 - Key idea is to advance the clock to next event at every stage:
 - When next customer in input file arrives
 - When a customer departs
 - Waiting line for customers is a queue
 - Waiting line for departures is a priority queue (heap)
Huffman Coding Trees

Using fixed length codes can waste space

- Fixed length codes:
 - ASCII: 8 bits per character
 - Unicode: 16 bits per character

- Natural language does not have a uniform distribution of letters
 - Relative frequency of letters can be exploited
 - Variable length coding:
 - Z K F C U D L E
 - 2 7 24 32 37 42 42 120

- Desire is to build the tree with minimum external path weight
 - Weighted path length of a leaf: weight of the leaf times its depth
 - The binary tree with minimum external path weight is the one with the minimum sum of weighted path lengths for a given set of leaves
 - Ex: a letter with high weight should have low depth to minimize its cost

Huffman Tree Construction

- Create a list of nodes
 - Node contains letter/frequency pairs
 - Nodes are in increasing order of frequency
 - At each step, combine two smallest nodes into a binary tree and reorder as needed

Step 1:

```
2 7 24 32 37 42 42 120
```

Step 2:

```
9
```

```
2 Z 7 K
```

Step 3:

```
32 C 33
```

```
9
```

```
2 Z 7 K
```

CSC 375-Turner, Page 37
Huffman Tree Construction (cont.)

- Process continues until entire tree is built.

Step 4:

```
<table>
<thead>
<tr>
<th>37</th>
<th>42</th>
<th>42</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>D</td>
<td>L</td>
<td>E</td>
</tr>
</tbody>
</table>
```

Assigning Codes

- Use the completed tree
 - Right branch assigns 1 bit
 - Left branch assigns 0 bit

```
<table>
<thead>
<tr>
<th>37</th>
<th>42</th>
<th>42</th>
<th>65</th>
<th>32</th>
<th>33</th>
<th>9</th>
<th>7</th>
<th>2</th>
<th>24</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>D</td>
<td>L</td>
<td>E</td>
<td>C</td>
<td>M</td>
<td>M</td>
<td>K</td>
<td>Z</td>
<td>M</td>
<td>E</td>
</tr>
</tbody>
</table>
```

CSC 375-Turner, Page 39

```
<table>
<thead>
<tr>
<th>120</th>
<th>306</th>
<th>186</th>
<th>107</th>
<th>65</th>
<th>32</th>
<th>33</th>
<th>9</th>
<th>2</th>
<th>7</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

CSC 375-Turner, Page 40
Coding and Decoding

- A set of codes meets the **prefix property** if no code in the set is the prefix of another.

- Examples:
 - Code for DEED:
 - Decode 1011001110111101
 - Expected cost per letter: