Definitions

- A tree is a collection of nodes:
 - The collection can be empty
 - Otherwise, a tree consists of
 - A distinguished node r, called the root
 - Zero or more nonempty sub-trees T_1, T_2, \ldots, T_n, each of whose roots are connected by a directed edge from r

- General Tree characteristics
 - The root of each subtree is a child of r
 - r is the parent of each subtree root.
 - Example using recursive definition:

Definitions (cont.)

- General Tree characteristics
 - Out degree: the number of children of that node
 - Forest: a collection of one or more trees.
 - Binary tree definitions that don’t conflict also apply
 - Example (Figure 6.1):

CSC 375-Turner, Page 2
General Tree Node

What operations must be supported in a general tree?

- The General Tree and Node ADTs:

  ```cpp
  template <class Elem> class GTreeNode {
  public:
    GTreeNode(const Elem&);  // Constructor
    ~GTreeNode();            // Destructor
    Elem value();            // Return node’s value
    bool isLeaf();           // TRUE if node is a leaf
    GTreeNode* parent();     // Return parent
    GTreeNode* leftmost_child(); // Return first child
    GTreeNode* right_sibling(); // Return right sibling
    void setValue(Elem&);    // Set node’s value
    void insert_first(GTreeNode<Elem>* n); // Insert 1st child
    void insert_next(GTreeNode<Elem>* n); // Insert next sib
    void remove_first();     // Remove first child
    void remove_next();      // Remove right sibling
  }
  ```

  ```cpp
  template <class Elem> class GenTree {
  public:
    GenTree();   // Constructor
    ~GenTree();  // Destructor
    void clear();  // Free the nodes
    GTreeNode* root(); // return root
    void newroot(Elem, // Combine trees
                  GTreeNode<Elem>* root, GTreeNode<Elem>*);
  }
  ```

General Tree Traversals

There is no concept of an inorder traversal

- Recursive definitions:

 - Preorder: visit the root, then perform a preorder traversal of each subtree from left to right
 - Postorder: perform a preorder traversal of each subtree from left to right, then visit the root
 - Preorder Example:

    ```cpp
    template <class Elem>
    void GenTree<Elem>::print(node GTreeNode<Elem>* subroot) {
      if (subroot->isLeaf())
        cout << "Leaf: ";
      else
        cout << "Internal: ";
      cout << subroot->value() << "\n";
      for (GTreeNode<Elem>* temp = subroot->leftmost_child();
           temp != NULL; temp = temp->right_sibling())
        print(temp);
    }
    ```
General Tree Example

- Example:

 R
 / \
 A B
 / /
C D E F
□ Preorder: R A C D E B F
□ Postorder: C D E A F B R
□ Inorder?

- Example:

 A
 /\
B C
 / \
D E F
 G H I J K
L M N
□ Preorder:
□ Postorder:

CSC 375-Turner, Page 5

General Tree Implementations

There are several choices, depending on application

- Array-based implementations:
 □ Parent pointer
 □ Lists of children (hybrid array/link)
 □ Leftmost child/right sibling

- Link-based implementations:
 □ Fixed-size arrays for child pointers
 □ Linked lists of child pointers

- Storage-based
 □ Sequential tree implementation

CSC 375-Turner, Page 6
Parent Pointer Implementation

Probably the simplest general tree implementation

- Each node stores only a pointer to its parent
 - Not very general purpose
 - Very good for answering whether two nodes are in the same tree
 - Operation is called **FIND**
 - A Disjoint set problem:
 - Determine if two objects are in the same set (**FIND**)
 - Merge two sets together (**UNION**)

- A useful application is determining equivalence classes

Parent Pointer Implementation

- Nodes are stored in an array:

```
Parent's Index 0 0 1 1 1 2 7 7 7
Label  R A B C D E F W X Y Z
Node Index 0 1 2 3 4 5 6 7 8 9 10
```
Union/Find

- Are two elements in the same tree?

  ```
  bool Gentree::differ(int a, int b) {
    int root1 = FIND(a);
    int root2 = FIND(b);
    return (root1 != root2);
  }
  ```

- Implementing Union and Find:

  ```
  void Gentree::UNION(int a, int b) {
    int root1 = FIND(a);
    int root2 = FIND(b);
    if (root1 != root2)
      array[root2] = root1;
  }
  ```

  ```
  int Gentree::FIND(int curr) const {
    while (array[curr] != ROOT)
      curr = array[curr];
    return curr;
  }
  ```

- Keep the depth small using **weighted union rule**

 - Weighted union rule: join the tree with fewer nodes to the tree with more nodes

Equivalent Processing Example

- Initial:

 - Array
    ```
    -1 -1 -1 -1 -1 -1 -1 -1
    ```
 - Trees
    ```
    A B C D E
    F G H I J
    ```

- After processing (A,B), (C,H), (G,F), (D,E), (I,F):

 - Array
    ```
    -1 0 -1 -1 -1 -1 -1 -1
    ```
 - Trees
    ```
    A B C D E
    F G H I J
    ```
Equivalence Processing Example (cont.)

- After processing (H,A), (E,G)

<table>
<thead>
<tr>
<th>Array</th>
<th>Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 5 3 1 9 2 5 -1</td>
<td>A B C D E F G H I J</td>
</tr>
</tbody>
</table>

- After processing (H,E)

<table>
<thead>
<tr>
<th>Array</th>
<th>Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 0 0 3 1 5 2 5 -1</td>
<td>A B C D E F G H I J</td>
</tr>
</tbody>
</table>

Path Compression

Resets the parent of every node on the path from node X to root R

- Code:

```cpp
GTreeNode* Gtree::FIND(GTreeNode* curr) const {
    if (array[curr] == ROOT)
        return curr;
    return array[curr] = FIND(array[curr]);
}
```

- Process (H,E):

<table>
<thead>
<tr>
<th>Array</th>
<th>Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 5 5 1 5 2 5 -1</td>
<td>A B C D E F G H I J</td>
</tr>
</tbody>
</table>
Lists of Children
Hybrid Representation

- Key question: how well does a representation perform certain tasks?
 - find left child and right sibling
 - find a parent

<table>
<thead>
<tr>
<th>Parent</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>R -1</td>
<td></td>
</tr>
<tr>
<td>A 0</td>
<td></td>
</tr>
<tr>
<td>C 1</td>
<td></td>
</tr>
<tr>
<td>B 0</td>
<td></td>
</tr>
<tr>
<td>D 1</td>
<td></td>
</tr>
<tr>
<td>F 3</td>
<td></td>
</tr>
<tr>
<td>E 1</td>
<td></td>
</tr>
</tbody>
</table>

- What tree does this represent?

Leftmost Child/Right Sibling
Array Representation

- Array of “pointers” (indices), contains:
 - index of Left child
 - label (value)
 - index of parent
 - index of right sibling

CSC 375-Turner, Page 13
Fixed Size Pointer Array

Linked Representation

- Each parent maintains an array of pointers to children

```
R 2, -
A 3, -
C 0, D 0, E 0, F 0
```

![Fixed Size Pointer Array Diagram]

Linked Lists of Child Pointers

Linked Representation

- Each parent maintains an array of pointers to children

```
R, -
A, -
C, D, E, F
```

![Linked Lists of Child Pointers Diagram]

Alternative

```
R, -
A, -
C, D, E, F
```

![Alternative Diagram]
K-ary Trees

A *k*-ary tree is a tree whose nodes may have up to *k* children

- A binary tree is the same as a *k*-ary tree for *k* = 2

- Features and disadvantages
 - Relatively easy to implement
 - More wasted space as *k* grows

- As go FBTs, so go FKTs:
 - Full 3-ary Tree Theorem: The number of leaves in a non-empty full 3-ary tree is equal to 2^n + 1 where *n* is the number of internal nodes
 - Corollary: The number of empty subtrees in a nonempty 3-ary tree is ...?

Sequential Tree Implementations

Represent an application of the space/time tradeoff principle

- Goal: store a series of node values with minimum information necessary to reconstruct the tree structure
 - Advantage: space is saved
 - Disadvantage: cost to regenerate tree (loss of efficient access to nodes)

- Use a symbol to mark NULL links:
 - AB/D//CEG///FH//1//
Sequential Tree Implementations (cont.)

- FBT implies the list may be stored more efficiently
 - Mark a leaf or an internal
 - In a FBT, no ‘/’ characters in the representation
 - Using the prior example, internals are marked
 - Representation is A'B'/DC'E'G/F'H'I

- General trees require a ‘list end’ indicator

```
  R
 /   \
/     /
A     B
|     |
C     D
     E
     F
```

- Representation is RAC)D)E))BF)))

CSC 375-Turner, Page 19