Searching

Organizing and retrieving information is at the heart of most computer applications

- Searching is a very frequently performed task

- Search process:
 - Abstract view: Determine if an element with a particular value is a member of a particular set
 - Common view: Try to find the record with a record collection that has a particular key value.

- Some of the techniques presented here require material from chapter 8.
 - Assigned reading: Chapter 8, section 8.3 and all of Chapter 9

Buffers and Buffer Pools (sec 8.3)

The general idea is to use a RAM buffer to hide latency.

- **Caching or buffering**: the act of storing in RAM a piece of data from a faster or slower device
 - allows the faster device to do something else while the slower device reads from or writes to the buffer

- Examples
 - CPU cache is a buffer for RAM
 - RAM is a buffer for disks of various types
 - Disk can buffer for tape

- Associated concepts:
 - **Buffer pool**: a set of multiple buffers
 - **Page**: a piece of memory large enough to fill a buffer

CSC 375-Turner, Page 2
Buffer Pools

An example is virtual memory.

- A hard disk is used to simulate a very large RAM memory
- System RAM is the buffer pool
- A page is a block of memory (usually some multiple of 512 bytes)
 - Address space of a process can be broken into multiple pages
 - At any given time, some pages may be on disk and some in RAM
 - Requesting a memory address currently on disk causes a page fault
- Two options for page fault:
 - Find an “empty” page in RAM and transfer the page from disk
 - No empty pages in RAM; follow a page replacement strategy
- Page replacement strategies:
 - FIFO
 - LFU
 - LRU

Searching

- Formal definition:
 - Suppose \(k_1, k_2, \ldots, k_n \) are distinct keys
 - Given a collection \(C \) of \(n \) records of the form
 \[
 (k_1, I_1), (k_2, I_2), \ldots, (k_n, I_n)
 \]
 - \(I_j \) is information associated with key \(k_j \) for \(1 \leq j \leq n \).

- Search problem: given key value \(K \), locate the record \((k_j, I_j) \) in \(C \) such that \(k_j = K \)
 - **successful** search: record with \(k_j = K \) is found
 - **unsuccessful** search: no record with \(k_j = K \) is found

- Queries:
 - **Exact-match query**: search for a record whose key matches a specific key value
 - **Range query**: search for all records whose key values fall within a specified range
Searching Categorization

- Three general approaches
 - Sequential and list methods
 - Works well for sequences (duplicate keys allowed)
 - Appropriate for data stored in RAM
 - Direct access by key value (hashing)
 - Doesn’t work well for sequences
 - Works well for data on disk or in RAM
 - Tree indexing methods (chapter 10, not covered)

Searching Sorted Arrays

- Sequential search
 - $\Theta(n)$, average and worst case
 - Unacceptable for large data sets
- Binary search
 - $\Theta(\log n)$, average and worst case
 - Works only for previously sorted data
- Dictionary search
 - a “computed” binary search
 - based on knowledge about key distribution
 - also called interpolation search
Lists Ordered by Frequency

Instead of ordering by key value, a list may be ordered by frequency of access.

- Lists ordered by frequency: the expected frequency of occurrence determines ordering strategy
 - A sequential search is performed
 - Cost to access i^{th} record is i
 - Order in decreasing order of probability: p_i is the probability that record i will be accessed
 - That is,
 \[p_1 \geq p_2 \geq \ldots \geq p_n \]
 (Note: $\sum_{i=1}^{n} p_i = 1$ must be true)
 - The cost to access each element is (position of element) \times (probability of element)
 - Then the overall expected search cost is
 \[\overline{C_n} = 1p_1 + 2p_2 + \ldots + np_n \]

Lists Ordered by Frequency (cont.)

- Example: all records have equal probability
 - $p_i = 1/n$
 - Then
 \[\overline{C_n} = 1 \times 1/n + 2 \times 1/n + \ldots + n \times 1/n \]
 \[= \sum_{i=1}^{n} i/n = \frac{1}{n} \sum_{i=1}^{n} i \]
 \[= \frac{1}{n} \times \frac{n(n + 1)}{2} = \frac{n + 1}{2} \]
- Example: exponential frequency
 - Probabilities:
 \[p_i = \begin{cases}
 1/2^i & \text{if } 1 \leq i \leq n - 1 \\
 1/2^{n-1} & \text{if } i = n
 \end{cases} \]
 - Thus,
 \[\overline{C_n} \approx \sum_{i=1}^{n} \frac{i}{2^i} \approx 2 \]
The 80/20 Rule

Many real access patterns follow this rule of thumb.

- **The 80/20 rule**: 80
 - 80 and 20 are estimates (applications have their own values)
 - This behavior justifies caching techniques
 - When the rule applies, then reasonable search performance can be expected

- **Example: Zipf distribution**
 - A pattern followed by some naturally occurring distributions, including:
 - Distribution for frequency of word usage
 - Distribution for city populations
 - Related to the Harmonic series (chapter 2) as follows:
 - Zipf frequency for item i is $1/iH_n$
 - $(H_n = \sum_{i=1}^{n} 1/i \approx \log_e n)$
 - Then
 $$C_n = \sum_{i=1}^{n} \frac{i}{iH_n}$$
 $$= n/H_n$$
 $$\approx n/\log_e n$$

Self-Organizing Lists

This is why we studied the section on buffer pools.

- **A self organizing list** is a list that starts out unordered, but the access policy includes procedures to impose an order based on actual pattern of record access
 - Use rules called **heuristics** to determine how to reorder the list
 - The heuristics are similar to the buffer pool management strategies (buffer pools are like a form of self-organizing list)
 - **Heuristics:**
 - **Count**: Count the frequency of access. When a record is found, increment its count and move it up if the count is greater than preceding record(s)
 - **Move-to-front**: when a record is found, move it to the front of the list
 - **Transpose**: when a record is found, swap it with the record ahead of it
Self-Organizing Lists, Examples

- Initial list is A, B, C, D, E, F, G, H
- Access pattern is F D F G E G F A D F G E
 - Count heuristic:

 - Move-to-front heuristic:

 - Transpose heuristic:

Self-Organizing Lists, Examples

- Application: text compression
 - Keep a table of words previously seen
 - Use the move-to-front heuristic
 - If a word is not yet seen, then send the word
 - If a word has been seen, then send its current table index

 - Example: The car on the left hit the car
 - becomes: The car on 3 left hit 3 5 I 5

 - Similar in spirit to Ziv-Lempel coding
Searching in Sets

Determining whether a value is a member of a set is a special case of searching for keys in a sequence of records.

- Any of the prior search methods can be used.
- This problem allows us to speed up the process:
 - Bit vector or bitmap representation: use an array of \(n \) bits corresponding to \(n \) potential set members
 - \(i = 1 \) means that member \(i \) is present
 - \(i = 0 \) means that member \(i \) is not present
 - Application: document retrieval: find all documents in a set containing certain keywords
 - For each keyword, the system stores a bit vector (one bit for each document)
 - A '1' means that the document contains the keyword
 - Searching for three words is a logical AND of 3 bit vectors.

Hashing

A completely different approach in which search is by direct access based on the key value.

- **Hashing** is the process of accessing a record by mapping a key value to a position in a table.
- The mapping process requires a (normally \(\Theta(1) \)) mathematical function called the hash function, denoted by \(h \).
- The **Hash table** is an array that stores all of the records, denoted \(HT \).
- A record's position in the hash table is its **slot**.
- The number of slots is denoted by \(M \), numbering is from 0 to \(M - 1 \).
- The mapping function \(h \) must work as follows:
 - For any value \(K \) in the key range, \(h(K) = i, 0 \leq i < M \)
 - such that key\((HT(i)) = K \)
Hashing (cont.)

Hashing answers the specific question “what record, if any, has key value K?”

- Works well for sets (no duplicates)
- Not suitable for range queries
- Works well for in-memory and disk-based applications

- Example:
 - Store the n records with key values in the range 0 to $n - 1$
 - Hash function $h(K) = K$
 - This is not a practical example (Why?)

- Example:
 - Store about 1000 records having keys in the range 0 to 16,383
 - Impractical to keep a hash table with 16,383 slots
 - We need a hash function that maps the key range to a smaller table

CSC 375-Turner, Page 15

Collisions

- Given a hash function $h(k)$ and keys k_1 and k_2:
 - If $h(k_1) = h(k_2) = \beta$, then k_1 and k_2 have a collision at β under h.

- Collisions are inevitable in most applications
 - Example: birthday sharing

- Minimizing collisions requires good hash functions

- Finding a record (or a place in which to insert) requires a two-step procedure:
 1. Compute table location $h(k)$
 2. Starting with slot $h(k)$, search for the record containing key k (or an empty location where it may be inserted)

- The search procedure is the collision resolution technique. There are two major classes:
 - Open hashing, also called Separate chaining
 - Closed hashing, also called Open addressing

CSC 375-Turner, Page 16
Hash Functions

- **Requirement:**
 - A hash function must compute a slot index within the hash table’s range; thus, it computes \((\text{some value}) \mod M\)

- **Goals:**
 - A practical hash function evenly distributes the records stored among the hash table slots
 - Ideally, the even distribution is to all slots with equal probability
 - Success at this depends on the data’s distribution
 - It should also be fast (probably the easiest goal to accomplish)

- **Two situations normally faced:**
 - We know nothing about the incoming key distribution: attempt to evenly distribute the key range over the hash table, trying to avoid clustering
 - We know something about the incoming key distribution: use a distribution-dependent hash function

Examples

- **A Simple hash function:**
  ```
  int h (int x) {
      return (x % 16);
  }
  ```
 - The \(\mod 16\) operation makes the function dependent on the lower 4 bits of the key

- **Mid-square method:** square the key value, taking the middle \(r\) bits from the result for a hash table having \(2^r\) slots

- **Folding method:** sum the ASCII values of all letters, taking the result \(\mod M\):
  ```
  int h(char *x) {
      int i = 0; int sum = 0;
      while (x[i] != NULL) {
          sum += (int) x[i];
          i++;
      }
      return (sum % M);
  }
  ```
Examples

- Executable and Linking Format (ELF) hash, Unix Sys/V Release 4:

```c
int ELFhash(char *key) {
    unsigned long h = 0;
    while (*key) {
        h = (h << 4) + *key++;
        unsigned long g = h & 0xF0000000L;
        if (g) h ^= g >> 24;
        h &= ~g;
    }
    return h % M;
}
```

□ Works well with short and long strings
□ Every letter of the string has equal effect
□ Even distribution into hash table slots is very likely

Open Hashing

This is also called separate chaining.

- A collision resolution technique, in which:
 □ The hash table is not an array of records; rather, it is an array of pointers
 □ Each slot is treated as a bin so that collisions do not really occur
 □ For a given record with key \(k \) and \(h(k) = \beta \):
 - hash table slot \(\beta \) is the head of a linked list
 - Insert into slot \(\beta \) becomes a linked list insert

```
```

CSC 375-Turner, Page 19

```
```

CSC 375-Turner, Page 20
Closed Hashing

This is also called open addressing

- All records are stored directly in the hash table
 - Each record \(i\) has a **home position** defined by \(h(k_i)\)
 - If record \(i\) is inserted and another record already occupies \(i\)'s home position, then another slot must be found to store \(i\).
 - The search procedure to find a new slot is the collision resolution policy

Bucket Hashing

One implementation of closed hashing in which the extra list space is stored in the table.

- Divide the hash table into buckets
 - \(M\) slots are divided into \(B\) buckets, with \(M >> B\)
 - Include overflow bucket with large capacity at end
 - Records hash to the first slot of the bucket, then fill it sequentially
 - Overflow is used if a given bucket is full
 - Search: check bucket then check overflow (using linear search in both)
Collision Resolution Policies

- Goal is to find a free slot in the table

- Search proceeds by following a probe sequence: the series of slots visited during insert/search after a collision occurs
 - Whether inserting or searching, the probe sequence must be the same every time
 - Basic idea: follow probe sequence until one of the following is true:
 - a record with key = k is found
 - an empty slot is found (no record with key k exists in the hash table)
 - Insert with Probing:
    ```
    void insert(item R) {
      int home, pos, i;
      home = h(key(R));
      if (Table[home] == EMPTY)
        Table[home] = R;
      else {
        for (i = 1; Table[pos] != EMPTY; i++) {
          pos = (home + probe(key(R),i)) % M;
          if (key(T[pos]) == key(R)) ERROR;
        }
        Table[pos] = R;
      }
    }
    ```

Linear Probing

From a given position, linear probing searches the next available slot in the table.

- Probe function:
  ```
  int probe(int Key, int i) { return i; }
  ```
 - If the end of the table is reached, it wraps around to the top (see code on previous page)
 - At least one slot must always be empty in the table. Why?

- Linear probing suffers from primary clustering:
 - “Clusters” of occupied cells form
 - Any key hashing into a cluster requires several attempts to resolve the collision and then will add to the cluster

CSC 375–Turner, Page 23

CSC 375–Turner, Page 24
Primary Clustering

- Probabilities for which slot to use next are not the same
 - $h(k) = k \mod 11$
 - 1003 $\mod 11 = 2$, 1924 $\mod 11 = 10$, 3071 $\mod 11 = 2$, 2071 $\mod 11 = 3$, 4752 $\mod 11 = 0$

Insert in the following order: 1003, 1924, 3071, 2071, 4752

Better Linear Probing

- Use a constant c to skip by, instead of going to the next slot on every probe
 - probe($h(k), i$) = $h(k) + c \times i$
 - M and c should be relatively prime (Why?)

- Clustering can still exist
 - Example: $c = 3$, $h(k_1) = 3$, $h(k_2) = 9$
 - Probe sequences for k_1 and k_2 are linked together
Pseudo Random Probing

An ideal probe function selects the next slot in the probe sequence at random

- Why can a real probe function not act randomly?

- Pseudo random probing:
 - Select a random permutation of the numbers from 1 to \(M - 1 \): \(r_1, r_2, \ldots, r_{M-1} \)
 - All searches and insertions use the same permutation:
 - \(p(K, i) = Perm[i - 1] \)
 - that is, the \(i^{th} \) value in the probe sequence is \((h(k) + r_i) \mod M \)

- Example:
 - \(M = 101 \)
 - \(r_1 = 2, r_2 = 5, r_3 = 32 \)
 - \(h(k_1) = 30, h(k_2) = 28 \)
 - Probe sequence for \(k_1 \):
 - Probe sequence for \(k_2 \):

Quadratic Probing

- The \(i^{th} \) probe sequence function is \(i^2 \)

- That is, the \(i^{th} \) value in the probe sequence is \((h(k) + i^2) \mod M \)

- Example:
 - \(M = 101 \)
 - \(h(k_1) = 23, h(k_2) = 24 \)
 - Probe sequence for \(k_1 \):
 - Probe sequence for \(k_2 \):
Double Hashing

Prior probing methods can reduce or eliminate primary clustering.

- **Secondary clustering** occurs when two keys hash to the same slot, thus following the exact same probe sequence.

- Desirable: the probe sequence is a function of both the key and the home position.

- Double hashing adds a second hash function to the probe sequence:
 - \(p(k, i) = i \times h_2(k) \) for \(0 \leq i \leq M - 1 \)
 - Poor choice of \(h_2(k) \) results in poor ("disastrous") performance.
 - Make sure all cells can be probed by ensuring that all probe sequence constants are relatively prime to \(M \):
 - One method: make \(M \) prime.
 - Another method: set \(M = 2^m \) and make \(h_2 \) return an odd value between 1 and \(2^m \).

CSC 375–Turner, Page 29
Rehashing

- Consequences of a hash table that is too full:
 - Running time for operations start to take too long
 - Insertions might fail for certain collision resolution strategies

- Solution: build a bigger table
 - Find a prime number at least twice as large as current value of M
 - Allocate a new hash table (array)
 - Scan through the old hash table, inserting all elements into the new hash table
 - Delete the old hash table

- Operation is expensive but occurs relatively infrequently

- Strategies:
 - Rehash when the table is half full
 - Rehash when an insertion fails
 - Rehash when the table reaches a certain load factor

CSC 375-Turner, Page 31

Deletion

Deletion is tricky with hashing for the following reasons:

- Deleting a record must not hinder later searches (an empty slot means “stop the search”)

- Positions should also not be made unusable due to deletions (avoid a “zombie slot?”)

- Solution:
 - Add a special mark in place of the deleted record.
 - Mark is called the **tombstone**
 - Tombstones do not stop search but do add to average search time
 - Solutions to that added time:
 - Local reorganizations to try to shorten it
 - Periodically rehash the table

CSC 375-Turner, Page 32