Graphs

A highly useful data structure for modeling of maps, networks, relationships, and so forth.

- Defined by two sets:
 - a set of nodes, also called vertices
 - a set of edges that are connections linking pairs of vertices

- Chapter topics:
 - Basic graph terminology
 - Graph implementations
 - Common graph traversal (search) algorithms
 - Common graph algorithms for shortest path
 - Spanning tree algorithms

Definitions

- A Graph \(G = (V,E) \) consists of a set of vertices \(V \) and a set of edges \(E \), such that each edge in \(E \) is a connection between a pair of vertices in \(V \).
 - The number of vertices is written \(|V| \) and the number of edges \(|E| \).
 - \(|E| \) may range from 0 up to \(\Theta(|V|^2) \).
 - A **sparse** graph is one with relatively few edges.
 - A **dense** graph is one with relatively many edges.
 - A **complete** graph is one with all possible edges.
Definitions

- An **undirected graph** is a graph whose edges are not directed.
 - Example: an undirected graph

Definitions

- A **directed graph** or **digraph** is a graph whose edges are directed from one edge to another.
 - Example: a directed graph

- Example: a labeled, weighted directed graph
Definitions

- **Adjacent**: two vertices joined by an edge. They are also called neighbors.

- **Incident**: an edge connecting vertices \(u \) and \(v \), written as \((u,v)\), is incident on \(u \) and \(v \).

- **Path**: a path of length \(n - 1 \) is formed by the sequence of vertices \(v_1,v_2,\ldots,v_n \) if there exist edges from \(v_i \) to \(v_{i+1} \) for \(1 \leq i < n \).
 - **Simple path**: all vertices on the path are distinct.
 - **Length of the path**: the number of edges it contains.
 - **Cycle**: path of length 3 or more connecting some vertex to itself.
 - **Simple cycle**: a cycle that is a simple path except for the first/last vertex.

Definitions

- **Subgraph**: a subgraph \(S = (E_s,V_s) \) is formed from graph \(G = (V,E) \) by selecting a subset \(V_s \) of \(V \) and a subset \(E_s \) of \(E \).

- **Connected**: an undirected graph is connected if there is at least one path from any vertex to any other.

- **Acyclic**: a graph without cycles.
 - **Directed acyclic graph (DAG)**: a directed graph without cycles.
 - **Free tree**: a connected, undirected graph with no cycles.
 - **Free tree (alternative)**: a connected, undirected graph with \(|V| - 1\) edges.
Graph Representations

- Adjacency matrix:
 - If $|V| = n$, then the matrix is an $n \times n$ array.
 - Rows are labeled 0 through $n - 1$ corresponding to vertices v_0 to v_{n-1}.
 - Row i contains entries for vertex v_i.
 - The (i,j) entry represents whether there is an edge between v_i and v_j.
 - The (i,j) entry can be a single bit (1 for present, 0 for absent) or a weight (some number for 'present with weight x' or 0 for absent).
 - Space requirements: $\Theta(|V|^2)$
 - Example: a directed graph

- Adjacency list:
 - Represented by an array of linked lists.
 - If $|V| = n$, then the array has n entries.
 - List i represents the list of vertices adjacent to v_i in a directed sense.
 - As with the matrix, an entry can be 0 or 1 for unweighted graphs or it can have another numeric value to represent a weight.
 - Space requirements: $\Theta(|V| + |E|)$
 - Example: a directed graph

```plaintext
CSC 375-Turner, Page 7
```

```
CSC 375-Turner, Page 8
```
Comparison of Representations

- Space efficiency: depends on the number of edges
 - Sparsely populated: adjacency list
 - Densely populated: adjacency matrix
- Time efficiency: often the adjacency list is better
 - Many algorithms require visiting of all neighbors...

Graph Implementations

- Graph abstract class

  ```cpp
  class Graph {
    public:
      virtual int n() =0;
      virtual int e() =0;
      virtual int first(int) =0;
      virtual int next(int, int) =0;
      virtual void setEdge(int, int, int) =0;
      virtual void delEdge(int, int) =0;
      virtual int weight(int, int) =0;
      virtual int getMark(int) =0;
      virtual void setMark(int, int) =0;
  }
  ```
The Edge Class

- Abstract class for graph edges

```java
class Edge {
    int v1() = 0;
    int v2() = 0;
};
```

The Adjacency Matrix

- Adjacency Matrix Class Header:

```java
class Graphm : public Graph {
private:
    int numVertex, numEdge;
    int **matrix;
    int *mark;
public:
    Graphm(int numVert) {
        int i, j;
        numVertex = numVert;
        numEdge = 0;
        mark = new int[numVert];
        for (i = 0; i<numVert; i++)
            mark[i] = UNVISITED;
        matrix = (int**) new int*[numVertex];
        for (i = 0; i<numVertex; i++)
            matrix[i] = new int[numVertex];
        for (i = 0; i<numVertex; i++)
            for (int j = 0; j<numVertex; j++)
                matrix[i][j] = 0;
    }
    int first(int);
    int next(int, int);
    void setEdge(int, int, int);
    void delEdge(int, int);
    int weight(int, int);
    int getMark(int);
    void setMark(int, int);
};
```
The Adjacency Matrix

- Function Implementations

```c
int first(int v) {
    int i;
    for (i = 0; i<numVertex; i++)
        if (matrix[v][i] != 0) return i;
    return i;
}

int next(int v1, int v2) {
    int i;
    for(i = v2+1; i<numVertex; i++)
        if (matrix[v1][i] != 0) return i;
    return i;
}
```

```c
void setEdge(int v1, int v2, int wgt) {
    Assert(wgt > 0, "Illegal weight value");
    if (matrix[v1][v2] == 0) numEdge++;
    matrix[v1][v2] = wgt;
}

void delEdge(int v1, int v2) {
    if (matrix[v1][v2] != 0) numEdge--;
    matrix[v1][v2] = 0;
}

int weight(int v1, int v2) {
    return matrix[v1][v2];
}

int getMark(int v) {
    return mark[v];
}

void setMark(int v, int val) {
    mark[v] = val;
}
```
The Adjacency List

- Adjacency List Class Header:

```java
class Graph1 : public Graph {
private:
    int numVertex, numEdge;
    List<Edge>** vertex;
    int *mark;
public:
    Graph1(int numVert) {
        int i, j;
        numVertex = numVert; numEdge = 0;
        mark = new int[numVertex];
        for (i = 0; i<numVertex; i++) mark[i] = UNVISITED;
        vertex = (List<Edge>**) new List<Edge>*[numVertex];
        for (i = 0; i<numVertex; i++)
            vertex[i] = new LList<Edge>();
    }
    int n();
    int e();
    int first(int);
    int next(int, int);
    void setEdge(int, int, int);
    void delEdge(int, int);
    int weight(int, int);
    int getMark(int);
    void setMark(int, int);
};
```

The Adjacency List

- Function Implementations:

```java
int first(int v) {
    Edge it;
    vertex[v] -> setStart();
    if (vertex[v] -> getValue(it)) return it.vertex;
    else return numVertex;
}

int next(int v1, int v2) {
    Edge it;
    vertex[v1] -> getValue(it);
    if (it.vertex == v2) vertex[v1] -> next();
    else {
        vertex[v1] -> setStart();
        while (vertex[v1] -> getValue(it) && (it.vertex <= v2))
            vertex[v1] -> next();
    }
    if (vertex[v1] -> getValue(it)) return it.vertex;
    else return numVertex;
}
```
The Adjacency List

- Function Implementations:

```c
void setEdge(int v1, int v2, int wgt) {
    Assert(wgt>0, "Illegal weight value");
    Edge it(v2, wgt);
    Edge curr;
    vertex[v1] -> getValue(curr);
    if (curr.vertex != v2)
        for (vertex[v1] -> setStart();
            vertex[v1] -> getValue(curr);
            vertex[v1] -> next())
            if (curr.vertex >= v2) break;
    if (curr.vertex == v2)
        vertex[v1] -> remove(curr);
    else numEdge++;
    vertex[v1] -> insert(it);
}

void delEdge(int v1, int v2) {
    Edge curr;
    vertex[v1] -> getValue(curr);
    if (curr.vertex != v2)
        for (vertex[v1] -> setStart();
            vertex[v1] -> getValue(curr);
            vertex[v1] -> next())
            if (curr.vertex >= v2) break;
    if (curr.vertex == v2) {
        vertex[v1] -> remove(curr);
        numEdge--;
    }
}
```

CSC 375-Turner, Page 17

The Adjacency List

- Function Implementations:

```c
int weight(int v1, int v2) {
    Edge curr;
    vertex[v1] -> getValue(curr);
    if (curr.vertex != v2)
        for (vertex[v1] -> setStart();
            vertex[v1] -> getValue(curr);
            vertex[v1] -> next())
            if (curr.vertex >= v2) break;
    if (curr.vertex == v2)
        return curr.weight;
    else return 0;
}

int getMark(int v) {
    return mark[v];
}

void setMark(int v, int val) {
    mark[v] = val;
}
```

CSC 375-Turner, Page 18
Graph Traversals

It is often useful to visit the vertices in some specific order.

- **Generic Traversal Function**

  ```cpp
  void graphTraverse(const Graph* G) {
    for (v = 0; v < G -> n(); v++)
      G -> setMark(v, UNVISITED);
    for (v = 0; v < G -> n(); v++)
      if (G -> getMark(v) == UNVISITED)
        doTraverse(G,v);
  }
  ```

- **The doTraverse(G,v) function could be one of**
 - **Depth-first search**
 - For a given vertex, recursively visit all neighbors.
 - Effect is to follow a branch through the graph to its conclusion.
 - **Breadth-first search**
 - For a given vertex, examine all neighbors before visiting vertices further away.
 - Effect is to visit "one hop away", "two hops away", ...
 - **Topological sort**
 - Laying out vertices of a DAG in a linear order (according to prerequisite relationships).

CSC 375-Turner, Page 19

Graph Traversals

- **Depth-First Search**

  ```cpp
  void DFS(Graph* G, int v) {
    PreVisit(G, v);
    G -> setMark(v, VISITED);
    for (int w = G -> first(v);
        w < G -> n();
        w = G -> next(v,w))
      if (G -> getMark(w) == UNVISITED)
        DFS(G, w);
    PostVisit(G, v);
  }
  ```

CSC 375-Turner, Page 20
Graph Traversals

- Breadth-First Search

```c
void BFS(Graph* G, int start, Queue<int>* Q) {
    int v, w;
    Q->enqueue(start);
    G->setMark(start, VISITED);
    while (Q->length() != 0) {
        Q->dequeue(v);
        PreVisit(G, v);
        for (w = G->first(v);
            w < G->n();
            w = G->next(v, w))
            if (G->getMark(w) == UNVISITED) {
                G->setMark(w, VISITED);
                Q->enqueue(w);
            }
        PostVisit(G, v);
    }
}
```

Graph Traversals

- Recursive Topological Sort

```c
// Public function
void topsort(Graph* G) {
    int i;
    for (i = 0; i < G->n(); i++)
        G->setMark(i, UNVISITED);
    for (i = 0; i < G->n(); i++)
        if (G->getMark(i) == UNVISITED)
            tophelp(G, i);
}

// Private function
void tophelp(Graph* G, int v) {
    G->setMark(v, VISITED);
    for (int w = G->first(v);
        w < G->n();
        w = G->next(v, w))
        if (G->getMark(w) == UNVISITED)
            tophelp(G, w);
    printout(v);
}
```
Graph Traversals

- Queue-Based Topological Sort

```c
void toposort(Graph* G, Queue<int>* Q) {
    int Count[G -> n()];
    int v, w;
    for (v = 0; v < G -> n(); v++) Count[v] = 0;
    for (v = 0; v < G -> n(); v++)
        for (w = G -> first(v);
            w < G -> n();
            w = G -> next(v,w))
            Count[w]++;
    for (v = 0; v < G -> n(); v++)
        if (Count[v] == 0)
            Q -> enqueue(v);
    while (Q -> length() != 0) {
        Q -> dequeue(v);
        printf(v);
        for (w = G -> first(v);
            w < G -> n();
            w = G -> next(v,w)) {
            Count[w]--;
            if (Count[w] == 0)
                Q -> enqueue(w);
        }
    }
}
```

Shortest-Paths Problems

Sometimes it is useful to use a graph to find the shortest path from point A to B.

- Edges are labeled with real numbers representing weights, costs, distances, delay, etc.
- Goal is to find the smallest weighted path.
- Single-source shortest-paths problem:
 - Given a vertex s in graph G, find a shortest path from s to every other vertex in G.
- Approach 1:
 - Add vertices to a list S in order of distance from the source.
 - Given a vertex vi not yet in S:
 - $d(s, vi) = \min_{w \in S} (d(s, u) + w(u, vi))$
 - Means: find the minimum combination of "short path from s to a vertex already in S plus a weight coming from a vertex in S to the new vertex x."
Single-Source Shortest-Paths Problems

- Dijkstra's algorithm:

```c
void Dijkstra(Graph* G, int* D, int s) {
    int i, v, w;
    for (i = 0; i < G -> n(); i++) {
        v = minVertex(G, D);
        if (D[v] == INFINITY) return;
        G -> setMark(v, VISITED);
        for (w = G -> first(v); w < G -> n(); w = G -> next(v,w))
        if (D[w] > (D[v] + G -> weight(v, w)))
             D[w] = D[v] + G -> weight(v, w);
    }
}
```

```c
int minVertex(Graph* G, int* D) {
    int i, v;
    for (i = 0; i < G -> n(); i++)
        if (G -> getMark(i) == UNVISITED) {
            v = i;
            break;
        }
    for (i++; i < G -> n(); i++)
        if ((G -> getMark(i) == UNVISITED)
            & (D[i] < D[v]))
            v = i;
    return v;
}
```

CSC 375-Turner, Page 25

Shortest-Paths Problems

- All-Pairs shortest-paths problem:
 - Find the shortest distance between all pairs of vertices in the graph.
 - That is, for every $u, v \in V$, calculate $d(u, v)$

- Try 1: run Dijkstra's algorithm $|V|$ times
 - Works well if the graph is sparse, but not if it is dense.

- Try 2:
 - Uses concept of k-path: any intermediate vertex on a path between vertices u and v must be labeled less than k.
 - Direct edge between u and v is a 0-path
 - $D_k(v, u)$ is the length of the shortest k-path from v to u.
 - If that shortest k-path is already known, then
 - The $(k+1)$-path goes through vertex k: the best path is the best k-path from v to k followed by the best k-path from k to u.
 - The $(k+1)$-path does not go through vertex k: keep the best k-path seen before.

CSC 375-Turner, Page 26
All-Pairs Shortest-Paths Problem

- Floyd's Algorithm:

  ```c
  void Floyd(Graph* G) {
    int D[G -> n()] [G -> n()];
    for (int i = 0; i < G -> n(); i++)
      for (int j = 0; j < G -> n(); j++)
        D[i][j] = G -> weight(i, j);
    for (int k = 0; k < G -> n(); k++)
      for (int i = 0; i < G -> n(); i++)
        for (int j = 0; j < G -> n(); j++)
          if (D[i][j] > (D[i][k] + D[k][j]))
            D[i][j] = D[i][k] + D[k][j];
  }
  ```

Minimum-Cost Spanning Trees

- A **minimum-cost spanning tree** (MST) of G contains the vertices of G and a subset of its edges.

- Properties:
 1. has minimum total cost measured by summing values for all of the edges in the subset.
 2. keeps the vertices connected.

- Applications:
 - find the shortest set of wires connecting circuit components
 - Connecting a set of phones to use the least amount of wire
Prim’s Algorithm

- Start with any vertex u
 - Pick the least-cost edge connected to u that doesn’t create a cycle; assume that edge is (u, v).
 - Add vertex v and edge (u, v) to the graph
 - Repeat this until all vertices of the graph have been added.

- Finding a minimum-cost vertex:

  ```
  int minVertex(Graph* G, int* D) {
    int i, v; // Initialize v to any unvisited vertex;
    for (i = 0; i < G->n(); i++)
      if (G->getMark(i) == UNVISITED) {
        v = i;
        break;
      }
    for (i = 0; i < G->n(); i++)
      if ((G->getMark(i) == UNVISITED) && (D[i] < D[v]))
        v = i;
    return v;
  }
  ```

Prim’s Algorithm

- The algorithm:

  ```
  void Prim(Graph* G, int* D, int s) {
    int V[G->n()];
    int i, w;
    for (i = 0; i < G->n(); i++)
      if (v != s)
        AddEdgeToMST(V[v], v);
    if (D[v] == INFINITY)
      return;
    for (w = G->first(v);
        D[w] > G->weight(v, w) {
      D[w] = G->weight(v, w);
      V[w] = v;
    }
  }
  ```
Kruskal’s Algorithm

- Partition the set of vertices into |V|
equivalence classes

- Process edges in order of weight
 - An edge is added to MST (and two
equivalence classes combined) if it
connects two vertices in different
equivalence classes.
 - Repeat until only one equivalence class
exists.
 - Store edges in a min heap to process in
order of weight.

void Kruskel(Graph* G) {
 G.ENTREE A(G -> n());
 KruskElem E[G -> e()];
 int i;
 int edgecnt = 0;
 for (i = 0; i < G -> n(); i++)
 for (int w = G -> first(i);
 w < G -> n();
 w = G -> next(i, w)) {
 E[edgecnt].distance = G -> weight(i, w);
 E[edgecnt].from = i;
 E[edgecnt++].to = w;
 }
 minheap H(E, edgecnt, edgecnt);
 int numMST = G -> n();
 for (i = 0; numMST > 1; i++) {
 KruskElemp temp;
 H.remove(min(temp);
 int v = temp.from;
 int u = temp.to;
 if (A.diff(v, u)) {
 A.UNION(v, u);
 AddEdgeToMST(temp.from, temp.to);
 numMST--;
 }
 }
}