Chapter 4
Communication
Layered Protocols (1)

Figure 4-1. Layers, interfaces, and protocols in the OSI model.

Tannenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c)2007 Prentice Hall, Inc. All rights reserved 0132308227-5
Layered Protocols (2)

Figure 4-2. A typical message as it appears on the network.
Middleware Protocols

Figure 4-3. An adapted reference model for networked communication.
Types of Communication

Synchronize at request submission
Synchronize at request delivery
Synchronize after processing by server

Client
Request

Transmission interrupt
Storage facility

Server
Reply
Time

Figure 4-4. Viewing middleware as an intermediate (distributed) service in application-level communication.
Figure 4-5. (a) Parameter passing in a local procedure call: the stack before the call to read. (b) The stack while the called procedure is active.
Client and Server Stubs

Client
- Wait for result
- Call remote procedure
- Request

Server
- Call local procedure and return results
- Reply

Time

Figure 4-6. Principle of RPC between a client and server program.
Remote Procedure Calls (1)

A remote procedure call occurs in the following steps:
1. The client procedure calls the client stub in the normal way.
2. The client stub builds a message and calls the local operating system.
3. The client's OS sends the message to the remote OS.
4. The remote OS gives the message to the server stub.
5. The server stub unpacks the parameters and calls the server.

Continued ...
Remote Procedure Calls (2)

A remote procedure call occurs in the following steps (continued):

6. The server does the work and returns the result to the stub.
7. The server stub packs it in a message and calls its local OS.
8. The server’s OS sends the message to the client’s OS.
9. The client’s OS gives the message to the client stub.
10. The stub unpacks the result and returns to the client.
Figure 4-7. The steps involved in a doing a remote computation through RPC.
Passing Value Parameters (2)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>I</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

(a)

Figure 4-8. (a) The original message on the Pentium.
Passing Value Parameters (3)

Figure 4-8. (b) The message after receipt on the SPARC.
Passing Value Parameters (4)

Figure 4-8. (c) The message after being inverted. The little numbers in boxes indicate the address of each byte.
Parameter Specification and Stub Generation

```
foobar( char x; float y; int z[5] )
{
    ....
}
```

(a)

<table>
<thead>
<tr>
<th>foobar's local variables</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>z[0]</td>
</tr>
<tr>
<td></td>
<td>z[1]</td>
</tr>
<tr>
<td></td>
<td>z[2]</td>
</tr>
<tr>
<td></td>
<td>z[3]</td>
</tr>
<tr>
<td></td>
<td>z[4]</td>
</tr>
</tbody>
</table>

(b)

Figure 4-9. (a) A procedure. (b) The corresponding message.
Asynchronous RPC (1)

(a)

Figure 4-10. (a) The interaction between client and server in a traditional RPC.
Asynchronous RPC (2)

Client → Wait for acceptance → Server

Call remote procedure

Request

Accept request

Returns from call

Call local procedure

Time →

Figure 4-10. (b) The interaction using asynchronous RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved.
Asynchronous RPC (3)

Figure 4-11. A client and server interacting through two asynchronous RPCs.
Writing a Client and a Server (1)

Figure 4-12. The steps in writing a client and a server in DCE RPC.
Writing a Client and a Server (2)

Three files output by the IDL compiler:

- A header file (e.g., interface.h, in C terms).
- The client stub.
- The server stub.
Binding a Client to a Server (1)

- Registration of a server makes it possible for a client to locate the server and bind to it.

- Server location is done in two steps:
 1. Locate the server’s machine.
 2. Locate the server on that machine.
Figure 4-13. Client-to-server binding in DCE.
Berkeley Sockets (1)

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket</td>
<td>Create a new communication end point</td>
</tr>
<tr>
<td>Bind</td>
<td>Attach a local address to a socket</td>
</tr>
<tr>
<td>Listen</td>
<td>Announce willingness to accept connections</td>
</tr>
<tr>
<td>Accept</td>
<td>Block caller until a connection request arrives</td>
</tr>
<tr>
<td>Connect</td>
<td>Actively attempt to establish a connection</td>
</tr>
<tr>
<td>Send</td>
<td>Send some data over the connection</td>
</tr>
<tr>
<td>Receive</td>
<td>Receive some data over the connection</td>
</tr>
<tr>
<td>Close</td>
<td>Release the connection</td>
</tr>
</tbody>
</table>

Figure 4-14. The socket primitives for TCP/IP.
Figure 4-15. Connection-oriented communication pattern using sockets.
The Message-Passing Interface

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_bsend</td>
<td>Append outgoing message to a local send buffer</td>
</tr>
<tr>
<td>MPI_send</td>
<td>Send a message and wait until copied to local or remote buffer</td>
</tr>
<tr>
<td>MPI_ssend</td>
<td>Send a message and wait until receipt starts</td>
</tr>
<tr>
<td>MPI_sendrecv</td>
<td>Send a message and wait for reply</td>
</tr>
<tr>
<td>MPI_isend</td>
<td>Pass reference to outgoing message, and continue</td>
</tr>
<tr>
<td>MPI_isend</td>
<td>Pass reference to outgoing message, and wait until receipt starts</td>
</tr>
<tr>
<td>MPI_recv</td>
<td>Receive a message; block if there is none</td>
</tr>
<tr>
<td>MPI_irecv</td>
<td>Check if there is an incoming message, but do not block</td>
</tr>
</tbody>
</table>

Figure 4-16. Some of the most intuitive message-passing primitives of MPI.
Message-Queuing Model (1)

Figure 4-17. Four combinations for loosely-coupled communications using queues.

Tanebaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved.
Message-Queuing Model (2)

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Put</td>
<td>Append a message to a specified queue</td>
</tr>
<tr>
<td>Get</td>
<td>Block until the specified queue is nonempty, and remove the first message</td>
</tr>
<tr>
<td>Poll</td>
<td>Check a specified queue for messages, and remove the first. Never block</td>
</tr>
<tr>
<td>Notify</td>
<td>Install a handler to be called when a message is put into the specified queue</td>
</tr>
</tbody>
</table>

Figure 4-18. Basic interface to a queue in a message-queuing system.
General Architecture of a Message-Queuing System (1)

Figure 4-19. The relationship between queue-level addressing and network-level addressing.
General Architecture of a Message-Queuing System (2)

Figure 4-20. The general organization of a message-queuing system with routers.
Message Brokers

Figure 4-21. The general organization of a message broker in a message-queuing system.

Tannenbaum & Van Scoo, Distributed Systems: Principles and Paradigms, 2e, © 2007 Prentice Hall, Inc. All rights reserved.
IBM’s WebSphere Message-Queuing System

Figure 4-22. General organization of IBM’s message-queuing system.
Channels

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport type</td>
<td>Determines the transport protocol to be used</td>
</tr>
<tr>
<td>FIFO delivery</td>
<td>Indicates that messages are to be delivered in the order they are sent</td>
</tr>
<tr>
<td>Message length</td>
<td>Maximum length of a single message</td>
</tr>
<tr>
<td>Setup retry count</td>
<td>Specifies maximum number of retries to start up the remote MCA</td>
</tr>
<tr>
<td>Delivery retries</td>
<td>Maximum times MCA will try to put received message into queue</td>
</tr>
</tbody>
</table>

Figure 4-23. Some attributes associated with message channel agents.
Figure 4-24. The general organization of an MQ queuing network using routing tables and aliases.
Message Transfer (2)

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQopen</td>
<td>Open a (possibly remote) queue</td>
</tr>
<tr>
<td>MQclose</td>
<td>Close a queue</td>
</tr>
<tr>
<td>MQput</td>
<td>Put a message into an opened queue</td>
</tr>
<tr>
<td>MQget</td>
<td>Get a message from a (local) queue</td>
</tr>
</tbody>
</table>

Figure 4-25. Primitives available in the message-queuing interface.
Figure 4-26. A general architecture for streaming stored multimedia data over a network.
Streams and Quality of Service

Properties for Quality of Service:

- The required bit rate at which data should be transported.
- The maximum delay until a session has been set up.
- The maximum end-to-end delay.
- The maximum delay variance, or jitter.
- The maximum round-trip delay.
Enforcing QoS (1)

Figure 4-27. Using a buffer to reduce jitter.

Tannenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved.
Enforcing QoS (2)

Figure 4-28. The effect of packet loss in (a) non interleaved transmission and (b) interleaved transmission.
Synchronization Mechanisms (1)

Figure 4-29. The principle of explicit synchronization on the level data units.
Synchronization Mechanisms (2)

Figure 4-30. The principle of synchronization as supported by high-level interfaces.

Tannenbaum & Van Scoy, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved.
Figure 4-31. The relation between links in an overlay and actual network-level routes.
Information Dissemination Models (1)

- Anti-entropy propagation model
 - Node P picks another node Q at random
 - Subsequently exchanges updates with Q
- Approaches to exchanging updates
 - P only pushes its own updates to Q
 - P only pulls in new updates from Q
 - P and Q send updates to each other
Figure 4-32. The relation between the fraction s of update-ignorant nodes and the parameter k in pure gossiping. The graph displays $\ln(s)$ as a function of k.

Tannenbaum & van Sinderen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved.